Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract. Since distributed satellite observations of elevation change and velocity became available in the 1990s, Thwaites, Pine Island, Haynes, Pope, and Kohler Glaciers, located in Antarctica’s Amundsen Sea Embayment, have thinned and accelerated in response to ocean-induced melting and grounding-line retreat. We develop a crevasse image segmentation algorithm to identify and map surface crevasses on the grounded portions of Thwaites, Pine Island, Haynes, Pope, and Kohler Glaciers between 2015 and 2022 using Sentinel-1A satellite synthetic aperture radar (SAR) imagery. We also develop a geometric model for firn tensile strength dependent on porosity and the tensile strength of ice. On Pine Island and Thwaites Glaciers, which have both accelerated since 2015, crevassing has expanded tens of kilometers upstream of the 2015 extent. From the crevasse time series, we find that crevassing is strongly linked to principal surface stresses and consistent with von Mises fracture theory predictions. Our geometric model, analysis of SAR, and optical imagery, together with ice-penetrating radar data, suggest that these crevasses are near-surface features restricted to the firn. The porosity dependence of the near-surface tensile strength of the ice sheet may explain discrepancies between the tensile strength inferred from remotely-sensed surface crevasse observations and tensile strength measured in laboratory experiments, which often focus on ice (rather than firn) fracture. The near-surface nature of these features suggests that the expansion of crevasses inland has a limited direct impact on glacier mechanics.more » « less
-
Abstract We present Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 °S. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. These efforts have filled notable gaps including in major mountain ranges and the deep interior of East Antarctica, along West Antarctic coastlines and on the Antarctic Peninsula. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica’s ice, providing new opportunities to interpret continental-scale landscape evolution and to model the past and future evolution of the Antarctic ice sheets.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract. Atmospheric rivers (ARs) transport large amounts of moisture from the mid- to high-latitudes and they are a primary driver of the most extremesnowfall events, along with surface melting, in Antarctica. In this study, we characterize the climatology and surface impacts of ARs on WestAntarctica, focusing on the Amundsen Sea Embayment and Marie Byrd Land. First, we develop a climatology of ARs in this region, using anAntarctic-specific AR detection tool combined with theModern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) atmospheric reanalyses. We find that while ARs are infrequent (occurring 3 % of the time), they cause intense precipitation in short periods of time and account for 11 % of the annual surface accumulation. They are driven by the coupling of a blocking high over the Antarctic Peninsula with a low-pressure system known as the Amundsen Sea Low. Next, we use observations from automatic weather stations on Thwaites Eastern Ice Shelf with the firn model SNOWPACK and interferometric reflectometry (IR) to examine a case study of three ARs that made landfall in rapid succession from 2 to 8 February 2020, known as an AR family event. While accumulation dominates the surface impacts of the event on Thwaites Eastern Ice Shelf (> 100 kg m−2 or millimeters water equivalent), we find small amounts of surface melt as well (< 5 kg m−2). The results presented here enable us to quantify the past impacts of ARs on West Antarctica's surface mass balance (SMB) and characterize their interannual variability and trends, enabling a better assessment of future AR-driven changes in the SMB.more » « less
-
Abstract. We introduce a new software package called “icepack” for modeling the flow of glaciers and ice sheets.The icepack package is built on the finite element modeling library Firedrake, which uses the Unified Form Language (UFL), a domain-specific language embedded into Python for describing weak forms of partial differential equations.The diagnostic models in icepack are formulated through action principles that are specified in UFL.The components of each action functional can be substituted for different forms of the user's choosing, which makes it easy to experiment with the model physics.The action functional itself can be used to define a solver convergence criterion that is independent of the mesh and requires little tuning on the part of the user. Theicepack package includes the 2D shallow ice and shallow stream models.We have also defined a 3D hybrid model based on spectral semi-discretization of the Blatter–Pattyn equations.Finally, icepack includes a Gauss–Newton solver for inverse problems that runs substantially faster than the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method often used in the glaciological literature.The overall design philosophy of icepack is to be as usable as possible for a wide a swath of the glaciological community, including both experts and novices in computational science.more » « less
-
null (Ed.)Abstract. A system of subglacial lakes drained on Thwaites Glacier from 2012–2014. To improve coverage for subsequent drainage events, we extended theelevation and ice-velocity time series on Thwaites Glacier through austral winter 2019. These new observations document a second drainage cycle in2017/18 and identified two new lake systems located in the western tributaries of Thwaites and Haynes glaciers. In situ and satellite velocityobservations show temporary < 3 % speed fluctuations associated with lake drainages. In agreement with previous studies, these observationssuggest that active subglacial hydrology has little influence on thinning and retreat of Thwaites Glacier on decadal to centennial timescales.more » « less
-
Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss andthe ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce newgridded maps of ice thickness and bed topography for the internationalscientific community, but also to standardize and make available all thegeophysical survey data points used in producing the Bedmap griddedproducts. Here, we document the survey data used in the latest iteration,Bedmap3, incorporating and adding to all of the datasets previously used forBedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically,we describe the processes used to standardize and make these and futuresurveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal(https://bedmap.scar.org, last access: 1 March 2023) created to provideunprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data heldwithin it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023). See the Data availability section for the complete list of datasets.more » « less
-
Abstract Subglacial lakes require a thawed bed either now or in the past; thus, their presence and stability have implications for current and past basal conditions, ice dynamics, and climate. Here, we present the most extensive geophysical exploration to date of a subglacial lake near the geographic South Pole, including radar‐imaged stratigraphy, surface velocities, and englacial vertical velocities. We use a 1.5‐dimensional temperature model, optimized with our geophysical data set and nearby temperature measurements, to estimate past basal‐melt rates. The ice geometry, reflected bed‐echo power, surface and vertical velocities, and temperature model indicate that the ice‐bed interface is regionally thawed, contradicting prior studies. Together with an earlier active‐source seismic study, which showed a 32‐m deep lake underlain by 150 m of sediment, our results suggest that the lake has been thermodynamically stable through at least the last 120,000 years and possibly much longer, making it a promising prospective site for sediment coring.more » « less
An official website of the United States government
